skip to main content


Search for: All records

Creators/Authors contains: "Das, Adrian J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Range shifts of infectious plant disease are expected under climate change. As plant diseases move, emergent abiotic-biotic interactions are predicted to modify their distributions, leading to unexpected changes in disease risk. Evidence of these complex range shifts due to climate change, however, remains largely speculative. Here, we combine a long-term study of the infectious tree disease, white pine blister rust, with a six-year field assessment of drought-disease interactions in the southern Sierra Nevada. We find that climate change between 1996 and 2016 moved the climate optimum of the disease into higher elevations. The nonlinear climate change-disease relationship contributed to an estimated 5.5 (4.4–6.6) percentage points (p.p.) decline in disease prevalence in arid regions and an estimated 6.8 (5.8–7.9) p.p. increase in colder regions. Though climate change likely expanded the suitable area for blister rust by 777.9 (1.0–1392.9) km2into previously inhospitable regions, the combination of host-pathogen and drought-disease interactions contributed to a substantial decrease (32.79%) in mean disease prevalence between surveys. Specifically, declining alternate host abundance suppressed infection probabilities at high elevations, even as climatic conditions became more suitable. Further, drought-disease interactions varied in strength and direction across an aridity gradient—likely decreasing infection risk at low elevations while simultaneously increasing infection risk at high elevations. These results highlight the critical role of aridity in modifying host-pathogen-drought interactions. Variation in aridity across topographic gradients can strongly mediate plant disease range shifts in response to climate change.

     
    more » « less
  3. Free, publicly-accessible full text available July 1, 2024
  4. Blonder, Benjamin (Ed.)
    Free, publicly-accessible full text available May 1, 2024
  5. Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution. 
    more » « less
  6. Abstract The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential. 
    more » « less
  7. McGlinn, Daniel (Ed.)
  8. Abstract

    Invasive pathogens and bark beetles have caused precipitous declines of various tree species around the globe. Here, we characterized long‐term patterns of mountain pine beetle (Dendroctonus ponderosae; MPB) attacks and white pine blister rust, an infectious tree disease caused by the pathogen,Cronartium ribicola. We focused on four dominant white pine host species in Sequoia and Kings Canyon National Parks (SEKI), including sugar pine (Pinus lambertiana), western white pine (P. monticola), whitebark pine (P. albicaulis), and foxtail pine (P. balfouriana). Between 2013 and 2017, we resurveyed 152 long‐term monitoring plots that were first surveyed and established between 1995 and 1999. Overall extent (plots with at least one infected tree) of white pine blister rust (blister rust) increased from 20% to 33%. However, the infection rate across all species decreased from 5.3% to 4.2%. Blister rust dynamics varied greatly by species, as infection rate decreased from 19.1% to 6.4% in sugar pine, but increased in western white pine from 3.0% to 8.7%. For the first time, blister rust was recorded in whitebark pine, but not foxtail pine plots. MPB attacks were highest in sugar pines and decreased in the higher elevation white pine species, whitebark and foxtail pine. Both blister rust and MPB were important factors associated with elevated mortality in sugar pines. We did not, however, find a relationship between previous fires and blister rust occurrence. In addition, multiple mortality agents, including blister rust, fire, and MPB, contributed to major declines in sugar pine and western white pine; recruitment rates were much lower than mortality rates for both species. Our results highlighted that sugar pine has been declining much faster in SEKI than previously documented. If blister rust and MPB trends persist, western white pine may follow similar patterns of decline in the future. Given current spread patterns, blister rust will likely continue to increase in higher elevations, threatening subalpine white pines in the southern Sierra Nevada. More frequent long‐term monitoring efforts could inform ongoing restoration and policy focused on threats to these highly valuable and diverse white pines.

     
    more » « less
  9. Abstract

    Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.

     
    more » « less